Supplemental File 3. Equations, initial conditions, and parameter values used for simulations. SHR-SCR Model in wild type conditions $$\frac{dS_v}{dt} = k_1 - a_1 S_v + a_2 S_e - d_1 S_v$$ $$\frac{dS_e}{dt} = a_1 S_v - d_2 S_e$$ $$\frac{dS_{2e}}{dt} = k_2 (C) S_e^2 - d_3 S_{2e}$$ $$\frac{dC}{dt} = k_3 \left(\frac{K_{1D}^2 C + K_{1D} S C + S_2 C}{K_{1D}^2 K_{2D} + K_{1D} K_{2D} S_e + K_{1D}^2 C + K_{2D} S_e + K_{1D} S C + S_2 C} \right) - d_4 C$$ $$\frac{dSC}{dt} = k_4 S_e C - d_5 S C$$ $$\frac{dS_2 C}{dt} = k_5 S_{2e} C - d_6 S_2 C$$ $$\frac{dS_2 C}{dt} = k_5 S_{2e} C - d_6 S_2 C$$ $$\frac{dS_2 C}{dt} = k_5 S_{2e} C - d_6 S_2 C$$ $$\frac{dS_2 C}{dt} = k_5 S_{2e} C - d_6 S_2 C$$ $[S_v(0), S_e(0), S_{2e}(0), C(0), SC(0), S_2C(0)] = (0.1, 0, 0, 0.1, 0, 0)$ where $$a_1 = \frac{D_1}{A_1}$$, $a_2 = 0$, and $k_2(C) = \frac{L}{1 + e^{-k(C - C_0)}}$. SHR-SCR Model in SCRi line $$\frac{dS_v}{dt} = k_1 - a_1 S_v + a_2 S_e - d_1 S_v$$ $$\frac{dS_e}{dt} = a_1 S_v - a_2 S_e - d_2 S_e$$ $$\frac{dS_{2e}}{dt} = k_2 (C) S_e^2 - d_3 S_{2e}$$ $$\frac{dC}{dt} = 0$$ $$\frac{dSC}{dt} = k_4 S_e C - d_5 S C$$ $$\frac{dS_2 C}{dt} = k_5 S_{2e} C - d_6 S_2 C$$ $$[S_v(0), S_e(0), S_{2e}(0), C(0), SC(0), S_2 C(0)] = (0.1, 0, 0, 300, 0, 0)$$ where $$a_1 = \frac{D_1}{A_1}$$, $a_2 = \frac{D_2}{A_2}$, and $k_2(C) = \frac{L}{1 + e^{-k(C - C_0)}}$. | Parameter | Biological meaning (units) | Initial Value | Estimated Value | Reference | |-----------|---|---------------|-----------------|---------------------------| | k_1 | Production of SHR in vasculature (Conc/hr) | 300 | | Cruz-Ramirez et al, 2012 | | D_1 | DC of SHR from vasculature to endodermis ($\mu m^2/sec$) | 2.11 | | Experimentally determined | | A_1 | Area of vasculature cell (μm^2) | 31.63 | | Experimentally determined | | D_2 | DC of SHR from endodermis to vasculature (μ m ² /sec) | 2.08 | | Experimentally determined | | A_2 | Area of endodermis cell (μm^2) | 36.08 | | Experimentally determined | | d_1 | Degradation of SHR monomer in vasculature (1/hr) | 1 | | Cruz-Ramirez et al, 2012 | | d_2 | Degradation of SHR monomer in endodermis (1/hr) | 1 | 1000 | Estimated | | L | Maximum value of k_2 (1/hr) | 300 | 0.5 | Estimated | | k | Steepness of k_2 curve (1/Conc.) | | 0.1 | Estimated | | C_0 | Midpoint of k_2 curve (Conc.) | | 360 | Estimated | | d_3 | Degradation of SHR homodimer in endodermis (1/hr) | 1 | | Cruz-Ramirez et al, 2012 | | k_3 | Production of SCR (1/hr) | 1100 | | Cruz-Ramirez et al, 2012 | | K_{1D} | Dissociation constant for SHR (Conc.) | 1000 | | Cruz-Ramirez et al, 2012 | | K_{2D} | Dissociation constant for SCR (Conc.) | 1000 | 500 | Estimated | | d_4 | Degradation of SCR (1/hr) | 1 | | Cruz-Ramirez et al, 2012 | | k_4 | Formation of 1:1 SHR-SCR complex (1/hr) | 5 | | Cruz-Ramirez et al, 2012 | | d_5 | Degradation of 1:1 SHR-SCR complex (1/hr) | 1 | | Cruz-Ramirez et al, 2012 | | k_5 | Formation of 2:1 SHR-SCR complex (1/hr) | 5 | | Based on k_4 | | d_6 | Degradation of 2:1 SHR-SCR complex (1/hr) | 1 | | Based on d_5 | Parameter values. Note that all diffusion coefficients were converted to hours for estimation and simulation. Some parameters were estimated using experimental data: for the rest, the initial values were used in simulations. DC: diffusion coefficient